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Abstract. In the Newton/log-barriermethod,Newton steps are taken for the log-barrier func-
tion for a �xed value of the barrier parameter until a certain convergence criterion is satis�ed.
The barrier parameter is then decreased and the Newton process is repeated. A naive analysis
indicates that Newton's method does not exhibit superlinear convergence to the minimizer
of each instance of the log-barrier function until it reaches a very small neighborhood of the
minimizer. By partitioning according to the subspace of active constraint gradients, however,
we show that this neighborhood is actually quite large, thus explaining why reasonably fast
local convergence can be attained in practice. Moreover, we show that the overall convergence
rate of the Newton/log-barrier algorithm is superlinear in the number of function/derivative
evaluations, provided that the nonlinear program is formulatedwith a linear objective and that
the schedule for decreasing the barrier parameter is related in a certain way to the convergence
criterion for each Newton process.

1. Introduction

We consider the nonlinear programming problem

min f(x) subject to c(x) � 0; (1)

where f : IRn ! IR and c : IRn ! IR
m are smooth (twice Lipschitz continuously

di�erentiable) functions. The logarithmic barrier function for (1) is

P (x;�) = f(x) � �
mX
i=1

log ci(x): (2)

We denote by x(�) a minimizer of P (:;�) for � > 0 and assume that x(�) exists
for all su�ciently small�. Methods based on (2) approximate x(�) for a sequence
of small, decreasing values of � > 0. Under certain conditions (see Fiacco and
McCormick [10]), we have lim�#0 x(�) = x�, where x� is a local minimizer of (1).

The Newton/log-barrier method proceeds by �xing � at a certain value and
applying Newton's method to the unconstrained problem

min
x

P (x;�); (3)
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stopping the Newton iterations when some tolerance is satis�ed, giving an ap-
proximation to x(�). (Typically, the size of the Newton step or of the gradient
Px(x;�) is required to fall below a certain threshold that depends on �.) The bar-
rier parameter � is then decreased (to �+, say), and Newton's method is applied
to P (�;�+). In some algorithms, a di�erent type of step such as a primal-dual
or extrapolation step is used at the �rst iteration after reduction to �+.

When the �nal approximation to x(�) is used as a starting point for Newton's
method applied to P (�;�+), it is well known that the �rst Newton step for each
value of � usually is a poor search direction, and a step length � considerably
smaller than 1 usually is needed to remain feasible at this iteration (see Conn,
Gould, and Toint [5], M. Wright [26], and S. Wright and Jarre [29]). Often,
however, subsequent iterations of Newton's method converge rapidly to x(�).
Although the Hessian Pxx(x;�) is positive de�nite near x = x(�) (see the proof
of [10, Theorem 12]), the observed rate of convergence of Newton's method is
better than we might expect from a naive application of the standard local
convergence theory, which implies that the largest Euclidean ball within which
quadratic convergence can be expected has radius O(�2). In fact, as we show
in Section 4, Newton's method with unit steps converges from all points in a
Euclidean neighborhood of radius O(��), for any � > 1 and all � su�ciently
small. In a sense, this radius is as large as we could expect for any minimization
algorithm applied to P (�;�), because Euclidean balls with radii proportional to
smaller powers of � (�1, for instance) may contain infeasible points for (1), which
lie outside the domain of P (�;�).

In Section 5, we discuss a line-search variant of Newton's method and specify
typical conditions that are required of the line-search parameter. We show that
when the iterates lie in neighborhoods of the type discussed in Section 4, the
unit step length satis�es these conditions for all su�ciently small values of �.

In Section 6, we use earlier results of S. Wright and Jarre [29] to show that,
when the objective function f is linear and the line search and stopping criteria
for the Newton iterations are de�ned in a certain reasonable way, then the �rst
Newton step taken after each substantial reduction of � produces an iterate
that is within the quadratic convergence domain of Section 4. Compiling all
our results, we specify a particular line-search Newton/log-barrier method|
Algorithm NLB|and show that for particular choices of the parameters, this
algorithm converges at an overall superlinear rate.

In Section 2, we discuss related work on log-barrier and interior-point meth-
ods and put our results and Algorithm NLB into perspective. Section 3 outlines
our assumptions and a basic lemma.

We use the following notation in the rest of the paper. For related positive
quantities � and �, we say � = O(�) if there is a constant M such that � �M�
for all � su�ciently small.We say that � = o(�) if �=�! 0 as �! 0, � = 
(�)
if � = O(�), and � = �(�) if � = O(�) and � = O(�). It follows that the
expression � = O(1) means that � � M for some constant M and all values of
� in the domain of interest.
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2. Motivation

A good deal of literature exists on variants of the Newton/log-barrier method,
starting with the book of Fiacco and McCormick [10]. Our focus in this pa-
per is on variants of the method in which all the steps are line-search Newton
steps for the primal barrier function P (�;�), for various values of �. That is, no
primal-dual or extrapolation steps are taken to enhance the overall convergence
after each reduction of �. We are motivated partly by a desire to keep the algo-
rithm simple, freeing it from devices that improve local convergence rate without
having an intuitive motivation or relevance at iterates far from the solution. An-
other reason for our continued investigation of the primal log-barrier approach
is that most of the e�ort in designing and implementing primal-dual algorithms
(which have greater practical potential than primal methods) has focused on
global convergence issues, and the merit functions that are used to ensure global
convergence are usually modi�cations of the purely primal function (2). See, for
example, the merit functions proposed by Forsgren and Gill [12], Byrd, Hribar,
and Nocedal [3], Gay, Overton, and M. Wright [13], and Conn et al. [4].

The approach of using only Newton steps for P (�;�) in the algorithm|in
particular, of using the approximate minimizer of P (�;�) for one value of � as the
starting point for Newton's method at the next value of �|is consistent with the
approach speci�ed in Fiacco and McCormick [10, p. 42] and also with approaches
described and analyzed by other authors, notably, M. Wright [24, p. 389], [26,
Section 2.2] and Conn et al. [4]. Nash and Sofer [22, Section 7] indicate that
when default parameter settings were used, the algorithm implemented in the
SUMT software (produced by Fiacco, McCormick, and their collaborators) is
also consistent with the type of method that we analyze (with the exception
that the Newton method can be replaced by quasi-Newton or steepest-descent
in the local search.)

Methods based on the modern theory of self-concordant barrier functions are
also consistent with the approach we analyze here, in that they take only line-
search Newton steps for the barrier function, for a monotonic sequence of barrier
values. Nesterov and Nemirovskii [23] discuss this approach for various types of
convex programming problems, considering both short-step methods (in which
each modest reduction in � is followed by a single unit-length step of Newton's
method) and long-step methods (in which more substantial reductions in � are
made, and a number of line-search Newton steps taken for P (�;�) for each value
of �).

The literature on self-concordant barrier methods typically assumes a linear
objective function (for example, [23, p. 57]), as we do also in Section 6 of this
paper. A simple reformulation can be used to express any nonlinear program (1)
in this form: we can introduce the arti�cial variable � and the new constraint
��f(x) � 0 and replace the objective in (1) by �. In the self-concordant setting,
the reason for assuming linear objective is that the second-order and higher
derivatives of the barrier function for the optimization problem do not contain
any contribution from the objective and are linear in the barrier parameter.
As a result of the latter property, the self-concordant property for the barrier
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function becomes independent both of the barrier parameter and of the objective;
it depends only on the feasible set and possibly its algebraic representation. Our
reasons for requiring a linear objective in Section 6 are similar, in that by doing
so we make the Newton step linear in ��1 (a fact that can be veri�ed easily from
(2) by calculating the Newton step for ��1P (�;�)) and consequently much easier
to analyze. The analysis of the linear-objective case is the focus of S. Wright and
Jarre [29].

We believe our results in Section 6 to be novel in that rapid local convergence
of primal barrier algorithms that use only Newton search directions for P (�;�)
apparently has not been described before, either in the context of nonlinear pro-
gramming or in convex programming applications of the type considered by Nes-
terov and Nemirovskii [23]. However, rapid convergence of methods for (1) based
on the log-barrier function (2) that take other kinds of steps has been described
in a number of papers. In the main, these papers address the poor performance
of Newton's method at the step taken immediately after a reduction of the bar-
rier parameter by using some other method to generate this step. Conn, Gould,
and Toint [5] advocate taking a primal-dual step, obtained by applying Newton's
method for nonlinear equations to the system (9), treating x and � as indepen-
dent variables. Gould [15] applies a similar strategy to the quadratic penalty
function for equality-constrained optimization. The related approach is to take
an approximate extrapolation step along the path of minimizers fx(�) j� > 0g,
so that the �rst step taken after reducing � to �k+1, say, is obtained by �tting a
polynomial through the approximate minimizers xk; xk�1; : : : at the barrier pa-
rameter values �k; �k�1; : : : or by computing information about the tangent _x(�)
at xk. Techniques of this class were suggested by Fiacco and McCormick [10];
see also Nash and Sofer [21], Benchakroun, Dussault, and Mansouri [1], and
Dussault [9]. The papers [1] and [9] show that \superlinear" reductions in �,
and hence rapid convergence to x�, can be attained. In fact, the method of Ben-
chakroun, Dussault, and Mansouri [1] generates identical iterates to Algorithm
NLB, for a version of this algorithm in which we make a particular choice of
the initial step length along the �rst Newton step taken after each reduction
of �. In a slightly di�erent vein, Fiacco and McCormick [10] and Jittorntrum
and Osborne [17], show that extrapolation can also be used to obtain successive
estimates of x�, but their techniques assume that the minimizations of P (x;�)
are carried out accurately for each value of �.

A related class of methods, known as analytic center methods, uses Newton's
method to �nd the successive minima of a certain logarithmic potential function
that is parametrized by an upper bound on the optimal value of f and possi-
bly by a weighting term. The resulting function is similar (but not identical) to
one that would be obtained by applying the reformulation discussed above in
which the objective f(x) is replaced by the linear objective � and the constraint
� � f(x) � 0. The convergence of Newton's method in this context has been
examined by Nesterov and Nemirovskii [23], Jarre [16], and Den Hertog, Roos,
and Terlaky [6], and others. The cited papers consider a special class of problems
in which the objective function and constraints are convex and satisfy a certain
scaled Lipschitz or self-concordancy condition, whereas our analysis applies lo-
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cally to general functions under smoothness assumptions that are standard in the
local analysis of nonlinear programming methods. To the best of our knowledge,
superlinear convergence has not been considered for analytic center methods.

In Section 7, we discuss all these methods and results further and relate them
to the results of this paper.

3. Assumptions

In this section, we specify the optimality conditions for the nonlinear program
(1), outline our assumptions on its solution x�, and introduce some notation.

The Lagrangian function for (1) is

L(x; �) = f(x) � �T c(x); (4)

where � is the vector of Lagrange multipliers. The solution x� of (1) satis�es
the �rst-order conditions for optimality, which are that there exists a Lagrange
multiplier vector �� such that

c(x�) � 0; �� � 0; (��)T c(x�) = 0; rf(x�) =
mX
i=1

��irci(x
�): (5)

The active constraints are the components of c for which ci(x�) = 0. Without
loss of generality we assume these to be the �rst q components of c. We also
assume that the solution is nondegenerate, that is,

[rc1(x
�) j � � � jrcq(x

�)] has rank q: (6)

(Note that nondegeneracy implies uniqueness of ��.) We also assume strict com-
plementarity, that is,

��i + ci(x
�) > 0; i = 1; 2; : : : ;m: (7)

Finally, we assume that second-order su�cient conditions for optimality are
satis�ed at (x�; ��), that is,

yTLxx(x
�; ��)y > 0 for all y 6= 0 with rci(x�)Ty = 0 for all i = 1; 2; : : : ; q.

(8)
It is easy to see that (x�; ��) is a root of the function F (x; �) de�ned by

F (x; �) =

�
Lx(x; �)
�c(x)

�
=

�
g �A(x)�
�c(x)

�
; (9)

where
� = diag(�1; �2; � � � ; �m):

The Jacobian of F is

rF (x; �) =

�
Lxx(x; �) �A(x)
�A(x)T C(x)

�
; (10)
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where C(x) = diag(c1(x); c2(x); � � � ; cm(x)). When the nondegeneracy, strict
complementarity, and second-order su�cient conditions hold,rF (x�; ��) is non-
singular. It follows from the assumed smoothness of f and c that the Jaco-
bian rF (x; �) is nonsingular for all (x; �) close to (x�; ��) (see Fiacco and Mc-
Cormick [10, Theorem 14]).

Given any strictly feasible point x and any positive value of the barrier pa-
rameter � in (2), we de�ne a vector of Lagrange multiplier estimates �(x; �)
by

�(x; �) = �C(x)�1e =

�
�

c1(x)
; : : : ;

�

cm(x)

�T
: (11)

If x is the exact minimizer x(�) of P (�;�), we de�ne

�(�)
4
= �(x(�); �): (12)

For future reference, we note that the derivatives of the barrier function (2)
are

Px(x;�) = rf(x) �
mX
i=1

�

ci(x)
rci(x); (13a)

Pxx(x;�) = r
2f(x) + �

mX
i=1

�
1

c2i (x)
rci(x)rci(x)

T �
1

ci(x)
r2ci(x)

�
: (13b)

4. Convergence of Newton's Method with Unit Steps to the
Log-Barrier Minimizer

We now analyze the local convergence properties of Newton's method with unit
steps to the minimizer x(�) of the barrier function P (x;�), for a �xed value of
�. From the current iterate w, the Newton step s is

s = �Pxx(w;�)
�1Px(w;�); (14)

and the next iterate is w+ = w+ s. In this section, we identify a Euclidean ball
around the minmizer of P (�;�) such that when the unit-step Newton method is
started from any point in this ball, it converges rapidly to the minimizer.

It is well known that under the second-order assumptions discussed above,
the barrier function P (x;�) has a minimizer x(�) at which the Hessian is positive
de�nite, though ill conditioned. Moreover, since the objective f(�) and constraint
functions ci(�), i = 1; 2; : : :;m are twice Lipschitz continuously di�erentiable,
then P (x;�) is also twice Lipschitz continuously di�erentiable near x(�). Hence,
quadratic convergence follows from a standard result (see, for example, Theo-
rem 5.2.1 of Dennis and Schnabel [8]). If w1; w2; w3; : : : are the Newton iterates,
the standard theory yields the estimate

kwt+1 � x(�)k � L1(�)L2(�)kwt � x(�)k2; (15)
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where L1(�) is a Lipschitz constant for Pxx(x;�) in the vicinity of x(�) and
L2(�) is a bound on kPxx(x;�)

�1k near x(�). In fact, we have that

L1(�) = O(��2); L2(�) = O(1): (16)

(The estimate of L2 is a consequence of the analysis in Murray [19] and the
second-order su�cient conditions (8)). Therefore, (15) reduces to

kwt+1 � x(�)k = O(��2)kwt � x(�)k2:

This expression does not even imply convergence of the iteration sequence unless
w1 is in a very small neighborhood of the solution, speci�cally,

kw1 � x(�)k = O(�2): (17)

S. Wright and Jarre [29] investigated the use of a reformulation of (1) in
which the objective function is linear. They show that if the �nal approximation
to x(��) obtained at the previous value �� of the barrier parameter is reasonably
accurate, then the Newton step for P (�;�) from this point for the new value of
� passes quite close to the new minimizer x(�). Even in this case, however, the
resulting point will not generally lie in the neighborhood (17), except possibly
when a stringent stopping criterion of the form kPx(x;�)k = O(�) is used at the
previous value of �.

In this section, we show that the expressions (15) and (17) are unduly pes-
simistic and, in fact, that there exists a constant ��0 > 0 such that quadratic
convergence of Newton's method with unit steps can be obtained from any point
w that satis�es

kw � x(�)k � C0�
� ; for all � 2 (0; ��0], (18)

where C0 and � are certain constants satisfying C0 > 0 and � > 1. That is,
the domain of quadratic convergence for P (�;�) shrinks as � # 0, but the rate
of shrinkage is not especially severe. Key to our analysis is a partitioning of
the space IR

n into the range space of the active constraint Jacobian and its
complement.A decomposition of this type has been used previously (for example,
by M. Wright [25{27]) to analyze the properties of the gradient and Hessian of
P (�;�); we mention some speci�c connections below.

We assume a priori that w lies in the neighborhood

kw � x(�)k � C��; (19)

where C > 0 and � > 1 are given constants, and that

� 2 (0; ��]; (20)

for some �� > 0. We show later in the section how C0 and ��0 depend on C and
��.
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The analysis is based on the following consequence of Taylor's theorem. If w
is the current iterate and s is the Newton step, as in (14), we have that

Px(w + s;�) = Px(w;�) + Pxx(w;�)s +

Z 1

0
[Pxx(w + �s;�)� Pxx(w;�)] s d�

=

Z 1

0

[Pxx(w + �s;�)� Pxx(w;�)] s d�: (21)

By analyzing the integral term, we obtain estimates for the projection of Px(w+
s;�) into two complementary subspaces induced by the Jacobian of the active
constraint matrix. We then investigate the two-sided projection of Pxx(w+ s;�)
in these same subspaces to obtain a bound on the size of the next Newton
step|the one taken from the point w + s.

We assume without loss of generality that �� is small enough that the neigh-
borhood (19) excludes local minimizers of P (�;�) other than x(�). Since � > 1
in (19), it follows that the ratio kw � x(�)k=� approaches zero as � # 0.

It follows immediately from the existence and boundedness of ( _x(�); _�(�))
for all su�ciently small � (see Fiacco and McCormick [10, Theorem 15]) that





�
x(�) � x�

�(�) � ��

�



 = O(�): (22)

Hence, by using (11), the strict complementarity assumption, and (19), we have
for all active indices i = 1; 2; : : : ; q that

ci(w) = ci(x(�)) + O(kw � x(�)k)

=
�

�i(�)
+O(��) =

�

��i
+ O(�min(2;�)) = �(�): i = 1; 2; : : : ; q; (23)

for all � su�ciently small.
Using this observation, we examine the relevant properties of Pxx(w;�). The

nature of the ill conditioning in this matrix at minimizing points w = x(�) was
examined by Lootsma [18] and Murray [19]. M. Wright [25] further examined the
eigenstructure of this matrix in a strictly feasible neighborhood of the solution
x�, for small �, and essentially showed in [25, Lemmas 3.1, 3.2, Theorem 3.1] that
this matrix has q eigenvalues of size �(��1) and n� q eigenvalues of size O(1).
Drawing on Murray [19], M. Wright [25, Theorem 3.3] shows further that the
n� q small eigenvalues are of size �(��1) at x = x(�). We now show that sim-
ilar eigenvalue estimates hold on the neighborhood (19), and we derive explicit
expressions for the Hessian and its inverse based on the two-sided projection
induced by the active constraint Jacobian [rci(w)]

q
i=1.

From (13b), we obtain by partitioning the sums into active and inactive
indices that

Pxx(w;�) =

qX
i=1

�

c2i (w)
rci(w)rci(w)

T +

(
r2f(w) �

qX
i=1

�

ci(w)
r2ci(w)

)

�
mX

i=q+1

�
�

c2i (w)
rci(w)rci(w)

T �
�

ci(w)
r2ci(w)

�
: (24)
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We deal with the three terms on the right-hand side in turn. Because of (23),
we have

�

c2i (w)
= �(��1); i = 1; 2; : : : ; q;

so by the nondegeneracy assumption, the �rst sum in (24) is a rank-q matrix,
whose q nonzero eigenvalues are all positive with size �(��1). (This claim follows
from [25, Lemma 3.1].) Using a standard factorization, we can write

qX
i=1

�

c2i (w)
rci(w)rci(w)

T = Û(w)D̂(w)Û (w)T ; (25)

where D̂(w) is a q � q diagonal matrix whose diagonal elements all have size
�(��1) and Û (w) is an n�q orthonormal matrix whose columns span the range
space of [rci(w)]

q
i=1.

Since kw � x(�)k=� = o(1), it follows that �=ci(w) � ��i , and the second
term in (24) is a small perturbation of the Lagrangian Hessian Lxx(x�; ��),
which by our second-order assumption (8) is positive de�nite on the null space
of [rci(x

�)]qi=1. Hence, if we de�ne ~U (w) to be an n � (n � q) orthonormal

matrix that spans the nearby null space of [rci(w)]
q
i=1 (so that [Û(w) j ~U (w)] is

orthogonal), straightforward arguments show that the (n� q) � (n � q) matrix
G22(w) de�ned by

~G22(w)
4
= ~U (w)T

(
r2f(w) �

qX
i=1

�

ci(w)
r2ci(w)

)
~U(w)

= ~U (w)TLxx(x
�; ��) ~U (w) + o(1) (26)

is positive de�nite, with all eigenvalues of size �(1).
Since ci(w) = 
(1) for i = q+1; : : : ;m and all � su�ciently small, the third

term in (24) is O(�). We see therefore that Pxx(w;�) is an O(1) perturbation of
the matrix in (25), so that Pxx(w;�) has q eigenvalues of size �(��1) and n� q
eigenvalues of size O(1). We now go on to show with the aid of a technical result
that in fact the small eigenvalues are all positive with size �(1), when w lies in
the neighborhood (19).

By combining all these observations about the three terms in (24), we �nd
that

Pxx(w;�) =
�
Û(w) ~U (w)

� �G11(w) G12(w)
GT
12(w) G22(w)

� �
Û (w)T

~U (w)T

�
; (27)

where

G11(w)
4
= Û (w)TPxx(w;�)Û (w) = D̂(w) + O(1); (28a)

G22(w)
4
= ~U (w)TPxx(w;�) ~U (w) = ~G22(w) +O(�); (28b)

G12(w)
4
= Û (w)TPxx(w;�) ~U (w) = O(1); (28c)

where all the matrices in these expressions are de�ned in (25), (26), and the
discussion above.
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It follows immediately from (28) that

kPxx(w;�)k = O(��1): (29)

To uncover the properties of the inverse Pxx(w;�)�1, we use the following tech-
nical result about the inverse of a block 2� 2 matrix.

Lemma 1. Let G be a symmetric matrix partitioned as

G =

�
G11 G12

GT
12 G22

�
;

where G11 and G22 are square. Suppose that G11 and G22 � GT
12G

�1
11 G12 are

nonsingular. Then G is nonsingular and G�1 has the form

G�1 =

�
H11 H12

HT
12 H22

�
; (30)

where

H11 = G�111 + G�111 G12(G22 �G
T
12G

�1
11 G12)

�1GT
12G

�1
11

H12 = �G
�1
11 G12(G22 � GT

12G
�1
11 G12)

�1

H22 = (G22 �G
T
12G

�1
11 G12)

�1:

In our case|the 2� 2 block matrix in (28)|we have from the fact that the
diagonals of D̂(w) have size �(��1) that

G11(w)
�1 = D̂(w)�1(I + O(�))�1 = D̂(w)�1 + O(�2) = O(�):

By using this estimate, we further obtain from (28) and (26) that

�
G22(w) �G12(w)

TG11(w)
�1G12(w)

��1
=
h
~G22(w) + O(�)

i�1
= ~G22(w)

�1 + O(�) = O(1)

and that all the m � q eigenvalues of this matrix are positive with size �(1).
Hence, from (27) and (30), we obtain

Pxx(w;�)
�1 =

�
Û (w) ~U (w)

� �H11(w) H12(w)
HT
12(w) H22(w)

� �
Û (w)T

~U (w)T

�
; (31)

where

H11(w) = O(�); H12(w) = O(�); H22(w) = O(1): (32)

Note in particular that for su�ciently small �, the largest n � q eigenvalues of
the matrix H(w) are O(�) of the n� q eigenvalues of ~G22(w)�1, which by (26)
are all of size �(1) and positive. Hence the smallest n � q eigenvalues of G(w)
are all of size �(1) and positive.

We summarize the analysis of the paragraphs above as a lemma.
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Lemma 2. Let the constants C > 0 and � > 1 in (19) be given. Then there is a
�� > 0 such that for all w and � satisfying (19) and (20), the Hessian Pxx(w;�)
is positive de�nite, and this matrix and its inverse have the structure shown in
(27), (28) and (31), (32), respectively.

We now examine the properties of Px(w;�). From (19) and (23) we have (by
decreasing �� if necessary) that

kw � x(�)k=ci(w) = O(���1)� 1; i = 1; 2; : : :; q; (33)

for all � satisfying (20). We can use this expression to estimate the di�erence
between the reciprocals c�1i (w) and c�1i (x(�)). We have

c�1i (x(�)) = [ci(w) +O(kw � x(�)k)]�1

= c�1i (w)
�
1 + O(ci(w)

�1kw � x(�)k)
��1

= c�1i (w) + c�2i (w)O(kw � x(�)k): (34)

From (2), noting that Px(x(�);�) = 0 and partitioning active and inactive in-
dices, we have that

Px(w;�) = Px(w;�)� Px(x(�);�)

=

qX
i=1

�
�

ci(w)
rci(w) �

�

ci(x(�))
rci(x(�))

�
(35)

+[rf(w) �rf(x(�))]

+
mX

i=q+1

�
�

ci(w)
rci(w)�

�

ci(x(�))
rci(x(�))

�
:

For the second term on the right-hand side of (35), we have by smoothness
of f that rf(w) � rf(x(�)) = O(kw � x(�)k). In the third term, we have for
each index i = q + 1; : : : ;m that ci(w) = 
(1) and ci(x(�)) = 
(1). Hence, by
smoothness of rci, this term has size O(�kw � x(�)k).

In the �rst term, we have for each active index i, using the smoothness of
rci together with (23), (33), and (34), that

�

ci(x(�))
rci(x(�))

=

�
�

ci(w)
+

�

c2i (w)
O(kw� x(�)k)

�
[rci(w) +O(kw � x(�)k)]

=
�

ci(w)
rci(w) +O(��1kw � x(�)k)rci(w) + O(kw� x(�)k): (36)

By collecting these observations and substituting into (35), we obtain

Px(w;�) =

qX
i=1

O(��1kw � x(�)k)rci(w) + O(kw� x(�)k): (37)
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From the de�nitions of Û (w) and ~U (w), it follows immediately that

Û (w)TPx(w;�) = O(��1kw � x(�)k); (38a)
~U (w)TPx(w;�) = O(kw � x(�)k): (38b)

Meanwhile from (32), we have for the Newton step from w that

s = �Pxx(w;�)
�1Px(w;�)

=
�
Û(w) ~U (w)

� �H11(w) H12(w)
HT
12(w) H22(w)

� �
Û (w)TPx(w;�)
~U (w)TPx(w;�)

�

=
�
Û(w) ~U (w)

� �O(�) O(�)
O(�) O(1)

� �
Û (w)TPx(w;�)
~U (w)TPx(w;�)

�
:

Hence, by combining with (38), we �nd that we can choose �� in (20) such that
for all w and � satisfying (19), we have

ksk � O(�kÛ (w)TPx(w;�)k+ k ~U (w)
TPx(w;�)k)

� C3

h
�kÛ(w)TPx(w;�)k+ k ~U (w)

TPx(w;�)k
i

(39a)

� C1kw � x(�)k = O(��); (39b)

for some positive numbers C1 and C3 independent of �.
Note that the naive estimate of ksk obtained by ignoring the structure of

Px(w;�) and Pxx(w;�) would be simply ksk � kPxx(w;�)�1kkPx(w;�)k =
O(���1), which is too pessimistic for our purposes.

We now examine the integrand in (21), partitioning it into the subspaces
de�ned by the active constraint gradients at the next Newton iterate w+ s. We
start by partitioning the integrand as follows:

[Pxx(w + �s;�)� Pxx(w;�)] s = r1 + r2 + r3 + r4; (40)

where � 2 [0; 1] and

r1 =

qX
i=1

�
�

c2i (w + �s)
rci(w + �s)rci(w + �s)T s �

�

c2i (w)
rci(w)rci(w)

T s

�

r2 = �

qX
i=1

�
�

ci(w + �s)
r2ci(w + �s)s �

�

ci(w)
r2ci(w)s

�

r3 =
�
r2f(w + �s)�r2f(w)

�
s;

r4 =
mX

i=q+1

�
�

c2i (w + �s)
rci(w + �s)rci(w + �s)T s �

�

c2i (w)
rci(w)rci(w)

T s

�
�

ci(w + �s)
r2ci(w + �s)s +

�

ci(w)
r2ci(w)s

�
:



On the Convergence of the Newton/Log-Barrier Method 13

To estimate the �rst term r1, we note from (39b) that ��1ksk = O(���1)� 1.
Hence, as in (34), we have

1

ci(w + �s)
=

1

ci(w)
+

1

c2i (w)
O(k�sk) =

1

ci(w)
+ O(��2ksk); i = 1; 2; : : : ; q;(41a)

1

c2i (w + �s)
=

1

c2i (w)

�
1 +

1

ci(w)
O(k�sk)

��2

=
1

c2i (w)
+O(��3ksk); i = 1; 2; : : : ; q: (41b)

By smoothness of rci, we obtain

�

c2i (w + �s)
rci(w + �s)rci(w + �s)T s

=

�
�

c2i (w)
+O(��2ksk)

�
[rci(w) +O(ksk)]

�
rci(w)

T s +O(ksk2)
�

=
�

c2i (w)
rci(w)rci(w)

T s+ O(��2kskkÛ (w)T sk)rci(w) + O(��1ksk2);

where we have used jrci(w)T sj = O(kÛ(w)T sk), which follows from the de�ni-
tion of Û(w) in (25). We have also used the fact that ��1ksk � 1 (see (39b)) to
absorb higher-order terms. By substituting into the de�nition of r1, we obtain

r1 =

qX
i=1

O(��2kskkÛ(w)T sk)rci(w) +O(��1ksk2) (42a)

=

qX
i=1

O(��2ksk2)rci(w + s) + O(��1ksk2); (42b)

where we have used kÛ (w)T sk � ksk, noting that the change of argument from
w to w + s in the �rst term causes a perturbation that can be absorbed in the
second term. (A minor variant of this analysis shows that the Lipschitz constant
for Pxx(�;�) is O(��2), as claimed in (16).)

For the second term r2 in (40), we have from (41a) that

�

ci(w + �s)
r2ci(w + �s)s =

�
�

ci(w)
+O(��1ksk)

� �
r2ci(w)s +O(ksk2)

�
=

�

ci(w)
r2ci(w)s+ O(��1ksk2): (43)

The remaining terms r3 and r4 are less signi�cant. By Lipschitz continuity of
rf , we have r3 = O(ksk2). In r4, the denominators all have size 
(1), so it is
easy to show that r4 = O(�ksk2).
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By collecting all these estimates into (40), performing the integration, and
substituting into (21), we obtain

Px(w + s;�) =

qX
i=1

O(��2kskkÛ (w)T sk)rci(w) + O(��1ksk2) (44a)

=

qX
i=1

O(��2ksk2)rci(w + s) +O(��1ksk2): (44b)

Hence, after a possible adjustment in �� in (20), we have from (44b) that there
is a positive number C2 independent of � (assumed without loss of generality to
satisfy C2 � 1) such that

Û (w + s)TPx(w + s;�) � C2�
�2ksk2; (45a)

~U (w + s)TPx(w + s;�) � C2�
�1ksk2; (45b)

for any orthonormal matrix Û (w + s) that spans the column space of [rci(x+
s)]qi=1 and for any orthonormal matrix ~U (w+ s) such that [Û(w+ s) j ~U (w+ s)]
is orthogonal.

We summarize the observations above in the following result.

Lemma 3. Let the constants C > 0 and � > 1 in (19) be given. Then there
exist a �� > 0 and constants C1, C2, C3 such that for all w and � satisfying (19)
and (20), the relationships (39a), (39b), and (45) are satis�ed, where s is the
Newton step (14).

An important consequence of this lemma is that if the next Newton iterate
w+ s also lies in the neighborhood (19), then we have from (39a) and (45) that
the Newton step s+ calculated from w + s satis�es

ks+k � 2C2C3�
�1ksk2: (46)

We now use all these estimates to show that if we choose the starting point w1 for
the Newton iteration in a slightly more restrictive neighborhood than (19), then
all Newton iterates will remain inside the full neighborhood (19), and quadratic
convergence of the Newton sequence to x(�) will be observed. We state the result
formally as a theorem.

Theorem 1. Let the constants C > 0 and � > 1 be given, and let C1, C2, C3,
and �� be de�ned as above, in such a way that the relationships (39a), (39b),
(45), and (46) hold for all w satisfying (19). Let the constants C0 > 0 and ��0
be chosen in such a way that the following inequalities are satis�ed:

(1 + 2C1)C0 � C; 2C0C1C2C3��
��1
0 � 1=4: (47)

Then if � 2 (0; ��0] and w1 is any point that satis�es

kw1 � x(�)k � C0�
� ; (48)
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then Newton's method with unit steps, applied to the function P (�;�) and starting
from w1, generates a sequence of steps fstgt=1;2;3;::: and iterates fwtgt=1;2;3;:::
such that

kwt+1 � x(�)k � C4�
�1kwt � x(�)k

2; t = 1; 2; 3; : : :; (49)

for some constant C4, and therefore converges Q-quadratically to x(�).

Proof. By (39b), we have that the �rst Newton step s1 satis�es

ks1k � C1kw1 � x(�)k; (50)

and so, because of the de�nition of C0 in (47), the next iterate w2 = w1 + s1
satis�es

kw2�x(�)k � kw1�x(�)k+ks1k � (1+C1)kw1�x(�)k � C0(1+C1)�
� < C��:

Hence, w2 also lies in the neighborhood (19), so we can apply (46) to obtain the
following estimate for the next Newton step s2:

ks2k � 2C2C3�
�1ks1k

2: (51)

From (48) and (50), we have that

��1ks1k � C0C1�
��1;

so by substituting (51) and using the de�nition (47), we obtain

ks2k � 2C0C1C2C3�
��1ks1k � (1=4)ks1k:

Hence, for the next Newton iterate w3 = w2 + s2, we have

kw3 � x(�)k � kw1 � x(�)k+ ks1k+ ks2k

� kw1 � x(�)k+ (5=4)ks1k � C0(1 + (5=4)C1)�
� < C��;

so that w3 also lies in the neighborhood de�ned by (19).
The argument continues inductively. We �nd in general that for all t =

1; 2; 3 : : :, we have that

kst+1k � 2C2C3�
�1kstk

2 � (2C2C3�
�1ks1k)kstk � (1=4)kstk (52)

and that

kwt+1 � x(�)k � kw1 � x(�)k+
tX

j=1

ksjk

� kw1 � x(�)k+
tX

j=1

4�(j�1)ks1k

� C0(1 + (4=3)C1)�
� < C��;

so that all Newton iterates w1; w2; w3; : : : belong to the neighborhood (19).
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From (52), we have that kstk, t = 1; 2; : : : decreases geometrically (in fact,
quadratically) to zero. Therefore, fwtg is a Cauchy sequence, so it converges,
say to a point w�(�). It follows from (45) that this limit point must satisfy

Px(w�(�);�) = 0:

Moreover, by the second-order condition (8), we have by the choice of �� and the
discussion about the Hessian Pxx(�;�) and its inverse that Pxx(w;�) is positive
de�nite for all w satisfying (19). Hence, w�(�) is a local minimizer of P (�;�).
Since x(�) is the only local minimizer of this function in the neighborhood (19)
by assumption, we must have w�(�) = x(�).

To prove that the convergence of fwtg to x(�) is quadratic, we estimate the
error kwt � x(�)k in terms of kstk. By using (52), we have for all t = 1; 2; 3; : : :
that

kwt � x(�)k =








1X
j=t

sj







 �
1X
j=t

ksjk �
1X
j=t

4�(j�1)kstk � (4=3)kstk:

Similarly, we have that

kwt � x(�)k � kstk �
1X

j=t+1

ksjk � (2=3)kstk:

Hence, from (46), we have

kwt+1 � x(�)k

� (4=3)kst+1k � (8=3)C2C3�
�1kstk

2 � (128=27)C2C3�
�1kwt � x(�)k

2;

indicating that the convergence is Q-quadratic, as claimed.
For later reference, note from (48), (50), and (52) that we have

kst+1k � [2C0C1C2C3]
2t (2C2C3)

�1�2
t(��1)+1; t = 0; 1; 2; : : : ;

and therefore from (45) we have

kPx(wt+1;�)k

� 2C2�
�2kstk

2 � [2C0C1C2C3]
2t (2C2C

2
3)
�1�2

t(��1); t = 1; 2; 3; : : : : (53)

5. Consistency with a Newton Line-Search Strategy

Theorem 1 describes the classic locally convergent version of Newton's method,
in which the unit step is taken at each iteration. Practical versions of Newton's
method use a line search or trust region to ensure convergence to a stationary
point or a local minimizer. In this section, we consider a line search strategy.
Under standard conditions for acceptance of the step length �, and assuming
that the current point w lies in the neighborhood (19) and that the assumptions
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of Theorem 1 are satis�ed, we show that � = 1 is an acceptable step length, for
all � su�ciently small. In fact, the Newton/log-barrier algorithm to be described
in the next section will use a modi�cation of the line search conditions below,
but they reduce to these conditions within the neighborhood (19).

The line search conditions on � are as follows:

P (w + �s;�) � P (w;�) + 
�sTPx(w;�) (54a)��sTPx(w + �s;�)
�� � �
sTPx(w;�); (54b)

where 
 and 
 are parameters that satisfy

0 < 
 < 1=2; 
 < 
 < 1: (55)

These conditions, which ensure that � is an approximate local minimizer of
the function P (�;�) along the direction s, can be found in Fletcher [11, (2.5.1),
(2.5.6)], who shows that there exists a range of acceptable points for which they
are satis�ed. Naturally, we also require w + �s to be strictly feasible for the
problem (1), since the function P (�;�) is not de�ned otherwise.

A number of general techniques are available for choosing � to satisfy condi-
tions (54); see, for example, Fletcher [11, Section 2.6] and the references therein.
A technique that is specialized to the characteristics of the log-barrier function
is described by Murray and Wright [20].

In accordance with standard practice, we accept the step � = 1 whenever
this choice satis�es the conditions (54). We now verify that such is indeed the
case for all � su�ciently small, whenever w satis�es (19).

We verify �rst condition (54b). From (44a), (39b), and using rci(w)T s =
O(kÛ (w)T sk) for i = 1; 2; : : : ; q, we have that

sTPx(w + s;�) =

qX
i=1

O(��2kskkÛ (w)T sk)rci(w)
T s +O(��1ksk3)

= O(��2kskkÛ (w)T sk2) +O(��1ksk3)

= O(��1ksk)
h
��1kÛ(w)T sk2 + k ~U (w)T sk2

i
= O(���1)

h
��1kÛ (w)T sk2 + k ~U (w)T sk2

i
: (56)

For the directional derivative at � = 0, we use (14), (28), and the properties of
D̂(w) to deduce that there exist constants C5 > 0 and C6 � 0 such that the
following chain of inequalities holds, for all � su�ciently small:

�sTPx(w; s)

= sTPxx(w;�)s

= [Û(w)T s]TG11(w)[Û (w)
T s] + 2[Û(w)T s]TG12(w)[ ~U (w)

T s]

+[ ~U(w)T s]TG22(w)[ ~U(w)
T s]

� C5�
�1kÛ(w)T sk2 � 2C6kÛ (w)

T skk ~U (w)T sk+ C5k ~U (w)
T sk2

= (C5=2)�
�1kÛ (w)T sk2 +

�
C5 � 2�C2

6=C5

�
k ~U(w)T sk2
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+
h
(C5=(2�))

1=2kÛ (w)T sk � (2�=C5)
1=2C6k ~U (w)

T sk
i2

� (C5=2)
h
��1kÛ(w)T sk2 + k ~U (w)T sk2

i
: (57)

By comparing this �nal expression with (56), we see that��sTPx(w + s;�)
�� = O(���1)

�
�sTPx(w;�)

�
; (58)

so that for any �xed 
 2 (0; 1), or indeed any varying 
 such that


 = 
(����1); (59)

for some �� 2 (1; �), the condition (54b) will be satis�ed whenever � is su�ciently
small.

We now verify that (54a) holds for � = 1. Since by Taylor's theorem we have

P (w + s;�) = P (w;�) + sTPx(w;�) +
1
2s

TPxx(w + �s;�)s;

for some � 2 (0; 1), a su�cient condition for (54a) is that

1
2s

TPxx(w + �s;�)s � �(1 � 
)sTPx(w;�);

for each � 2 (0; 1). Because of (14), the expression is equivalent to

1
2s

T [Pxx(w + �s;�)� Px(w;�)] s �
�
1=2� 


�
sTPxx(w;�)s;

and by (57), a su�cient condition for this inequality to be satis�ed is that��sT [Pxx(w + �s;�) � Px(w;�)] s
�� (60)

� C5

�
1=2� 


� h
��1kÛ(w)T sk2 + k ~U (w)T sk2

i
: (61)

We bound the left-hand side of (61) by taking the inner product of (40)
with the vector s and estimating the four terms sT r1, s

T r2, s
T r3, and sT r4

individually.By (42a), and using again the fact thatrci(w)T s = O
�
kÛ (w)T sk

�
,

we obtain

sT r1 = O(��2ksk)



Û(w)T s


2 + O(��1ksk3)

= O(��1ksk)

�
��1




Û (w)T s


2 + 


 ~U (w)T s


2� : (62)

From the de�nition of r2 and (43), we have that

sT r2 = O(��1ksk3) = O(��1ksk)ksk2: (63)

For the other two terms, we have from r3 = O(ksk2) and r4 = O(�ksk3) that

sT r3 = O(ksk3); sT r4 = O(�ksk4): (64)
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Using (39), we have by combining (62), (63), and (64) with (40) that

��sT [Pxx(w + �s;�)� Px(w;�)] s
�� = O(���1)

�
��1




Û (w)T s


2 + 


 ~U(w)T s


2� :
Because � � 1 > 0 and (1=2 � 
) > 0, we see that (61) and therefore (54a) is
satis�ed for all su�ciently small �.

We now summarize the results of this section.

Theorem 2. Suppose that the assumptions of Theorem 1 are satis�ed. Then
given any constants 
 and 
 satisfying (55), there exists ��1 2 (0; ��0] such that
when w1 is any point satisfying (48) with � 2 (0; ��1], the full step � = 1 along
the Newton direction s1 will satisfy the tests (54).

6. Rapid Convergence When the Objective Function Is Linear

We now discuss the case in which the objective function f(�) in (1) is linear
(having noted in Section 2 that any nonlinear program can be reformulated
in this fashion). We outline a version of the Newton/log-barrier method and
show that it converges rapidly for certain choices of the parameters and certain
line search strategies. We assume throughout that there is at least one active
constraint (that is, q � 1), since the other case is trivial in the current context.

We start with a result that describes the �rst Newton step taken immediately
after a reduction in the barrier parameter. In particular, we examine the point
obtained by applying a line search along the Newton direction together with
a stopping criterion based on the directional derivative, similar to (54b). For
convenience, we use a scaled version of the line search parameter, replacing � in
(54) by ��(�=��).

Theorem 3. Suppose that f is linear (that is, rf(x) � g) and that the barrier
parameter values �� and � satisfy the condition

� 2 [�0�
~�
�; �1��]; (65)

where �0 > 0, �1 2 (0; 1), and ~� 2 (1; 2] are constants. Suppose too that the
bound

kPx(x;��)k � �� (66)

is satis�ed at the current value of x. Then if s is the Newton direction for P (�;�)
from x, we have that

�sTPx(x+ ��(�=��)s;�)

=
�2�
�

�
1�

�

��
+ O(��)

� qX
i=1

ci(x)

ci(x+ ��(�=��)s)

�
(1� ��)

�
1�

�

��

�
+ O(��)

�

+O(�2�) (67)

=
�2�
�

�
1�

�

��
+ O(��)

� qX
i=1

�
(1� ��)(1� �=��) +O(��)

(1� ��)(1� �=��) + �=�� + O(��)

�

+O(�2�): (68)
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Proof. The proof from the analysis in the proof of Theorem 2 in S. Wright
and Jarre [29], allowing for the changes of notation (s in our analysis replaces p
in [29], �� replaces �, � replaces �+, and �� replaces � ). Note that our condition
(66) is obtained by setting � = 1 in [29, eq. (30)].

From (13a), we have that

�sTPx(x+ ��(�=��)s;�) = �s
T g + �

mX
i=1

sTrci(x+ ��(�=��)s)

ci(x+ ��(�=��)s)
: (69)

From [29, eq. (47)], we have

sTg = �q(�2�=�) [1� �=�� + O(��)] : (70)

We have from the display equation following [29, eq. (47)] that

sTrci(x+ ��(�=��)s) (71)

= �(�2�=�)�i(x; ��)
�1 [1� �=�� +O(��)] ; i = 1; 2; : : :; q;

where �i(x; ��) = ��=ci(x) as de�ned in (11). Similarly, we have from [29,
eq. (41)] and (11) that

ci(x+ ��(�=��)s) = ����i(x; ��)
�1 [1� ��(1� �=��) +O(��)] ;

= ci(x) [1� ��(1� �=��) + O(��)] ; i = 1; 2; : : : ; q: (72)

For an estimate of ksk, we have from [29, eq. (33)] that

ksk = O(�2�=�): (73)

For the inactive indices i = q + 1; : : : ;m, we note that ci(x + ��(�=��)s) is
uniformly bounded away from zero, so from (73) we have

sTrci(x+ ��(�=��)s)

ci(x + ��(�=��)s)
= O(ksk) = O(�2�=�); i = q + 1; : : : ;m: (74)

We now substitute (11), (70), (71), (72), (73), and (74) into (69) to obtain

�sTPx(x + ��(�=��)s;�)

=
�2�
�

[1� �=�� + O(��)]

qX
i=1

�
1�

�i(x; ��)
�1�

ci(x+ ��(�=��)s)

�
+ O(�2�)

=
�2�
�

[1� �=�� + O(��)]

qX
i=1

ci(x+ ��(�=��)s) � �i(x; ��)
�1�

ci(x+ ��(�=��)s)
+O(�2�)

=
�2�
�

[1� �=�� + O(��)]

qX
i=1

ci(x)
1� ��(1� �=��) +O(��) � �=��

ci(x+ ��(�=��)s)
+ O(�2�);

giving (67).
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To prove the other estimate (68), we use (72) and (11) to obtain

ci(x)

ci(x+ ��(�=��)s)
=

ci(x)

����i(x; ��)�1 [1� ��(1� �=��) + O(��)]

=
1

(1� ��)(1� �=��) + �=�� +O(��)
:

The result follows by substitution into (67). (Note that (68) is also an immediate
consequence of [29, eq. (48)].)

We next show that when we apply a condition similar to (54b) to the �rst
Newton step immediately after reduction from �� to �, the step lengths satis-
fying this condition form a small interval around �� = 1.

Theorem 4. Suppose that the conditions of Theorem 3 are satis�ed, in particu-
lar that x, s, �, and �� have the properties speci�ed therein. Let �� be a constant
satisfying ~� < �� < 2. We then have

�sTPx(x;�) = �(�2�=�): (75)

Moreover, a directional derivative condition of the form��sTPx(x+ ��(�=��)s;�)
�� � �C10

�
����=�

�
sTPx(x;�); (76)

or alternatively ��sTPx(x+ ��(�=��)s;�)
�� � C11�

��+2
� =�2; (77)

where C10 and C11 are given positive constants, is satis�ed if and only if

j1� ��j = O(����1� ): (78)

Proof. We prove (75) by substituting �� = 0 into (68). We obtain

�sTPx(x;�) =
�2�
�
(1� �=��)

qX
i=1

�
1� �=�� + O(��)

1 +O(��)

�
+ O(�2�)

= q
�2�
�
(1� �=��)(1� �=�� +O(��)) +O(�2�)

= q
�2�
�
(1� �=��)

2 + O(�3�=�); (79)

where in the third equality we used the relations � < �� � 1. It follows directly
from 0 < � < �� that

�sTPx(x;�) � q
�2�
�

+ O(�3�=�): (80)

Since � � �1��, we have 1� �=�� � 1� �1, so it follows from (79) that

�sTPx(x;�) � q
�2�
�
(1� �1)

2 + O(�3�=�): (81)
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By taking �� su�ciently small, the claim (75) follows immediately from (80)
and (81).

We now prove the second statement for (77); the other case involving (76)
follows immediately from (75).

We �rst prove the reverse implication; that is, we assume that (78) is satis�ed
and prove that (77) holds. We start by estimating the various terms that appear
in (68). Because of (65), we have

�� � (�=�0)
1=~�: (82)

Using this condition, together with �� > ~�, we have

j1���j(1��=��) = O(����1� ) = O(����=�)(�=��) = O(���=~��1)(�=��) = o(1)(�=��):

Using (82) again, we also have

�� = (�2�=�)(�=��) = O(�2=~��1)(�=��) = o(1)(�=��):

It follows from these estimates that each term in the summation in (68) satis�es

(1� ��)(1� �=��) + O(��)

(1 � ��)(1� �=��) + �=�� + O(��)
=

O(����1� )

(1 + o(1))(�=��)
= O(����=�):

Therefore we have from (68) that

�sTPx(x+ ��(�=��)s;�) = (�2�=�) [1� �=�� + O(��)]O(�
��
�=�) +O(�2�)

= O(���+2� =�2) + O(�2�):

The second term in dominated by the �rst term in this expression because from
� < �� and �� < 2, we have

�2� <
�4�
�2

=
�2+��
�

�2
�2���� �

�2+��
�

�2
;

for all �� (hence, �) su�ciently small. We conclude that (78) implies (77).
Now assume that (77) holds. We prove the required implication (78) by using

the estimates (67) and (68). When j1 � ��j = O(��), then (78) holds trivially,
since �� 2 (1; 2), so we assume from here onward that this relation does not hold.
We then have that

j1� ��j(1� �=��)� ��;

for all �� su�ciently small. Using (65), we obtain

j(1� ��)(1 � �=��) + O(��)j �
1
2 j1� ��j(1� �=��) �

1
2(1� �1)j1� ��j:

Likewise, we have for all �� su�ciently small that

1� �=�� +O(��) �
1
2(1� �1):
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In addition, we have ci(x) > 0, and for all � of interest we also have that
ci(x+ ��(�=��)s) > 0. Hence, by appealing to (67), we have from (77) that

�2�
�

1

4
(1� �1)

2j1� ��j

qX
i=1

ci(x)

ci(x+ ��(�=��)s)
� C11

���+2�

�2
:

Since all terms in the summation are positive, we have for each i = 1; 2; : : : ; q
that

�2�
�

1

4
(1� �1)

2j1� ��j
ci(x)

ci(x+ ��(�=��)s)
� C11

���+2�

�2
:

By de�ning �C11 = 4(1� �1)
�2C11, we can rearrange this equation and use (72)

to obtain

j1� ��j � �C11
ci(x+ ��(�=��)s)

ci(x)

����
�

= �C11 [1� ��(1� �=��) +O(��)]
����
�
:

By further rearrangement, we obtain

j1� ��j

�
1� �C11

����
�

�
� �C11���

���1
� +O(���+1� =�) � 3 �C11�

���1
� ; (83)

since it follows readily from (72) and the requirement that ci > 0 that �� � 2,
while the remainder term O(���+1� =�) is dominated by �C11�

���1
� for all �� (hence,

�) su�ciently small. From (82), and the assumption of 1 < ~� < ��, we have that

�C11
����
�
� �C11=�

1=~�
0 ���=~��1 �

1

2
;

for all �� su�ciently small. By substituting this bound into (83) we obtain the
required estimate (78).

It follows from Theorem 4 that the step �� = 1, or equivalently � = �=��,
is nearly optimal at this �rst step after reduction of �. We show now that all
steplengths satisfying (78) yield iterates that lie within the neighborhod (19),
for a certain choice of �.

Theorem 5. Suppose that the conditions of Theorem 4 are satis�ed and that
the step � = ��(�=��) taken along the direction s satis�es (78). We then have
that

kx+ ��(�=��)s� x(�)k = O(����) = O(���=~�): (84)

Proof. Note �rst that

kx+ ��(�=��)s� x(�)k � kx+ (�=��)s � x(�)k+ j��� 1j k(�=��)sk: (85)

From Wright and Jarre [29, Theorem 1], and using (66), we have that

kx+ (�=��)s � x(�)k = O(�2�): (86)
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From [29, eqs. (32), (33)], and noting that our current results use � = 2 in [29,
eq. (33)], we have that

k(�=��)sk = �(��): (87)

The �rst equality in (84) is obtained by substituting (86), (87), and (78) into
(85). The second equality follows from (82).

We now specify AlgorithmNLB, our variant of the Newton/log-barrier method.
Since we are interested only in local behavior of the method, we assume that
the initial value �0 is already small enough that the range of values in (65) is
nonempty for all �� � �0. Simple modi�cations can be applied to make this
method valid globally.

Algorithm NLB
Given �0 > 0, �0 2 (0; 1), �1 2 (0; 1), and ~�, �� with 1 < ~� < �� < 2;
Set k  0, x�1  strictly feasible initial value;
Set tol1  1;
repeat

xk  Newton(xk�1; �k; tol1);
if �k su�ciently small

terminate;
Set k k + 1;
Choose �k 2 [�0�~�k�1; �1�k�1];

Set tol1  ���+2k�1=�
2
k;

end (repeat)

The Newton procedure with line search is de�ned as follows

Procedure Newton(x; �; tol1);
Given 
 and 
 satisfying (55);
Set t 0, w0  x;
while kPx(wt;�)k > �

Set st  �Pxx(wt;�)�1Px(wt;�);
Choose � such that (54a) and��sTt Px(wt + �st;�)

�� � min
�
tol1;�
sTt Px(wt;�)

�
; (88)

are satis�ed, accepting � = 1 if it satis�es these conditions;
Set wt+1  wt + �st;
Set t t + 1;

end (while)
return wt.

We now show that in the line-search criterion (88), the right-hand side is
equal to tol1 at the �rst iteration of each call to Procedure Newton, while the
alternative value �
sT0 Px(w0;�) is operative on subsequent calls.

Theorem 6. Suppose that f is linear. Then for all steps k in Algorithm NLB
with k > 0 su�ciently large, the following properties are satis�ed.
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(i) At the �rst step (t = 0) taken within Procedure Newton within iteration
k of Algorithm NLB, we have that tol1 < �
sT0 Px(w0;�), so the value
� = ��(�k=�k�1) selected at this step will satisfy (78), for �� = �k�1.

(ii) At the second and subsequent steps (t = 1; 2; 3; : : :) within Procedure Newton
at iteration k, we have that tol1 > �
sTt Px(wt;�). Moreover, � = 1 is the
chosen step length at each of these iterations.

Proof. Using the notation �� = �k�1 and � = �k, we have from (82), (75),
and �� > ~� that

tol1
4
=
���+2�

�2
=
�2�
�

����
�
�
�2�
�
�
���=~�
0 ���=~��1 < �
sTPx(x;�);

for all � su�ciently small. It follows from (88) that (77) is satis�ed for C11 = 1.
Because of the convergence criterion at the previous invocation of Procedure
Newton, we have that kPx(w0;��)k � ��, so that condition (66) is satis�ed.
The other conditions of Theorem 3 (and Theorem 4) also hold, so by the forward
implication in Theorem 4, we conclude that (78) holds, proving (i).

Since (78) is satis�ed by the �rst steplength in Procedure Newton, and the
other conditions of Theorem 4 are satis�ed, we have from Theorem 5 that the
new iterate

w1
4
= x+ ��(�=��)s

will satisfy

kw1 � x(�)k = O(���=~�): (89)

By choosing some value

� 2 (1; ��=~�)

and choosing k large enough that �k is su�ciently small, we have from Theo-
rem 2 that the tests (54) are satis�ed by all subsequent iterates of the unit-step
Newton's method. Moreover, by a simple inductive argument based on (49), we
have that kwt+1 � x(�)k � kwt � x(�)k for t = 1; 2; 3; : : :, where fwtg is the
sequence of iterates generated by the unit-step Newton's method, so that we
have

kw � x(�)k = O(���=~�); (90)

for w = wt, t = 1; 2; : : :.
By showing that tol1 > �
sTPx(w;�) for all w satisfying (90), we ensure

that the condition (88) is identical to (54b) at each iterate, so that the unit
step length is in fact accepted in Procedure Newton for t = 2; 3; : : :, and hence
our claim (ii) holds. The following argument su�ces: By using (14), (39b) with
� = ��=~�, and the estimate (29), we have that

�
sTPx(w;�)

= 
sTPxx(w;�)s � O
�
ksk2

�
O (kPxx(w;�)k) = O

�
�2��=~��1

�
= o(1)���:
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Meanwhile from (65), we have

tol1 =
���+2�

�2
�

(�=�1)
��+2

�2
= �

�
���
�
:

The desired inequality follows by comparing these last two expressions.
Part (i) of Theorem 5 is predicated on the existence of an � satisfying both

(54a) and (88). We now prove existence by showing that the particular choice
�� = 1 (corresponding to � = �k=�k�1) satis�es these two line-search conditions.
It follows that Procedure Newton is well de�ned for all �k su�ciently small.

Theorem 7. Suppose that f is linear. Then for all k su�ciently large, at the
�rst step taken at each invocation of Procedure Newton (t = 0), there exists a
value of � that satis�es (54a) and (88).

Proof. Theorem 4 shows that there exists a range of values of �� satisfying
(78) for which (77) is satis�ed, for any given C11 > 0. Noting that Theorem 6
(i) shows that the right-hand side of (88) is ���+2k�1=�

2
k at the �rst step (t = 0) of

Procedure Newton, and taking C11 = 1, we have that (88) is satis�ed for all ��
su�ciently close to 1. Therefore, to prove the result, it is su�cient to show that
the other line-search condition (54a) is satis�ed for �� = 1.

As usual, we denote �k�1 by �� and �k by �. By Taylor's theorem, we have

P (x+ (�=��)s;�)� P (x;�) =
�

��

Z 1

0

sTPx(x+ �̂(�=��)s;�)d�̂: (91)

A cruder version of the estimate (68) su�ces for the purposes of this proof. Since
the summation in (68) is clearly bounded, and since �2�=� = o(1), we can write

�sTPx(x+ ��(�=��)s;�)

=
�2�
�

�
1�

�

��

� qX
i=1

�
(1� ��)(1 � �=��) + O(��)

(1� ��)(1� �=��) + �=�� + O(��)

�
+ o(��): (92)

By substituting �� = �̂ into (92), we obtain

(�=��)s
TPx(x+ �̂(�=��)s;�)

= ���

�
1�

�

��

� qX
i=1

�
(1� �̂)(1 � �=��) + O(��)

(1� �̂)(1� �=��) + �=�� +O(��)

�
+ o(��)

� ���

�
1�

�

��

� qX
i=1

�
(1� �̂)(1� �=��) +O(��)

(1� �=��) + �=�� + O(��)

�
+ o(��)

= ���

�
1�

�

��

�2
q(1� �̂) + o(��):

By integrating we therefore obtain

�

��

Z 1

0

sTPx(x+ �̂(�=��)s;�)d�̂ � �
1

2
��

�
1�

�

��

�2
q + o(��): (93)
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By substituting �� = 0 into (92), we obtain

�

��
sTPx(x;�) = ���

�
1�

�

��

� qX
i=1

1� �=�� +O(��)

1 +O(��)
+ o(��)

= ���

�
1�

�

��

�2
q + o(��): (94)

Since the �rst terms on the right-hand sides of both (93) and (94) have size
�(��), we have

�

��

Z 1

0

sTPx(x+ �̂(�=��)s;�)d�̂ � 

�

��
sTPx(x;�);

for any 
 2 (0; 1=2) and all �� su�ciently small. By combining this bound with
(91), we conclude that (54a) holds for �� = 1 (that is, � = �=��), as required.

The proof of Theorems 6 and 7 suggest a version of Algorithm NLB that
achieves superlinear convergence. Suppose we take �k = �0�

~�
k�1 for all k su�-

ciently large and make the particular choice � = �k=�k�1 at the �rst step taken
at each invocation of Procedure Newton. Then the proofs of these theorems in-
dicate that this value of � is accepted by the line search conditions at the �rst
iteration of Procedure Newton, that � = 1 is accepted on subsequent steps, and
that the method of Procedure Newton converges quadratically to x(�k). In fact,
Procedure Newton will satisfy the condition kPx(wt;�k)k � �k and therefore
will terminate after a very modest number of Newton iterations. As an example,
using (49), (82) and (86), we have that

kw2 � x(�k)k = O(��1k )kw1 � x(�k)k
2 = O(��1k �2k�1) = O(�4=~��1k ):

If ~� 2 (1; 4=3), we have kw2�x(�k)k = o(�2k), and therefore from (37) it follows
that kPx(w2;�k)k = o(�k), so that for this choice of ~�, the convergence tolerance
is satis�ed after just two Newton steps. (Values ~� � 4=3 can be accommodated
by using additional Newton steps.) Overall superlinear convergence of Algorithm
NLB to x� follows from the fact that the work per invocation of Procedure
Newton is bounded, and the sequence f�kg converges superlinearly to zero.

As pointed out by a referee, the search direction and special steplength
�k=�k�1 used by this variant of Algorithm NLB produce an identical result to
the extrapolation step of Benchakroun, Dussault, and Mansouri [1]. The fact that
one additional Newton step su�ces for each value of �, provided that ~� 2 (1; 4=3)
is also proved by these authors. Conn, Gould, and Toint [5] have a similar result
for their acceleration technique. What is perhaps surprising about the approach
described in this paper is that the same result can be recovered without the use
of special search directions. When the objective is linear, the usual Newton step
for P (�;�) has the required properties.

Even if we do not make the special choice � = �k=�k�1 for the �rst iteration
of Procedure Newton, but instead rely on the line search procedure and the
conditions (54a) and (88) to identify an appropriate value of � at this step,
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the overall rate will remain superlinear provided that the number of function
and derivative evaluations required to identify the �rst � values is bounded.
The latter requirement can be expected to hold for all reasonable line-search
algorithms. For instance, the specialized line search procedure for log-barrier
functions, such as that of Murray and Wright [20] can be expected to �nd an
appropriate � with just a couple of evaluations of P (�;�k) and Px(�;�k).

7. Discussion

We conclude by expanding the discussion of Section 2 to note a few more points
about the context of this work.

A consequence of the ill conditioning of Pxx(x;�) is that standard methods
of linear algebra for obtaining s, which solve the system

Pxx(x;�)s = �Px(x;�);

may be ine�cient or inaccurate. A number of authors have proposed alterna-
tive formulations of systems such as this (Gould [14]) or modi�ed factorization
schemes (Broyden and Attia [2], M. Wright [25]) or have shown that the inaccu-
racy introduced by the Cholesky factorization may not be especially detrimental
(M. Wright [27], S. Wright [28]). Since these numerical considerations are outside
the scope of this paper, we omit further discussion of this point.

Another line of investigation in the literature that is relevant to this paper
concerns the analytic center method for certain types of convex programming
problems. In this method, a logarithmic potential function di�erent from P (�;�)
is used, typically having the form

�(x; �) = �! log(� � f(x)) �
mX
i=1

log ci(x):

where ! > 0 is some constant and � is an upper bound on the optimal value
f(x�). It can be shown that for � > f(x�), the minimizer of �(x; �) coincides with
the minimizerx(�) of P (x;�) for some value of �. The algorithms apply Newton's
method to �nd approximate minima of �(x; �) for successivly decreasing values
of �. Variants of this approach are analyzed by Jarre [16] and Den Hertog, Roos,
and Terlaky [6], while in [7] the latter authors outline an extension to the log-
barrier function P (x;�) of this paper.

Relevant results include those of Jarre [16, Lemma 4] and Nesterov and
Nemirovskii [23, Theorem 2.2.3], who prove that Newton's method applied to
�(x; �) generates a sequence of steps s1; s2; : : : and iterates w1; w2; : : : (with
wj+1 = wj + sj) such that the quantity�

sTj �xx(wj ; �)sj
�1=2

=
�
�x(wj; �)

T�xx(wj; �)
�1�x(wj; �)

�1=2
converges quadratically to zero. This behavior requires the initial estimate w1

to be close enough to the minimizer of �(x; �) that the bound�
�x(wj; �)

T�xx(wj; �)
�1�x(wj; �)

�1=2
< � (95)
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is satis�ed, for some constant � that does not depend on �. Without embarking
on a detailed discussion of the relationship of these results to Section 4, we note
that near a solution x�, the eigenvalues of �xx(x; �) can be partitioned into two
size classes, in a similar way to those of Pxx(x;�), and that weighting of the norm
by �xx(w; �) has a similar purpose to the partitioning into subspaces spanned
by to the orthonormal matrices Û and ~U that we use in Section 4. The neigh-
borhood de�ned by (95) has a similar extent in the range space of Û (the active
constraint range space) as does our neighborhood (19), for values of � close to
1. However, the results for analytic center methods require the objective and
constraint functions to satisfy scaled Lipschitz or self-concordance conditions,
whereas this paper assumes the typical smoothness and second-order su�cient
conditions that are used in most local analyses of nonlinear programming al-
gorithms. Moreover, the literature on analytic center methods does not, to the
best of our knowledge, address the possibility of superlinear convergence.
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